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Procedural Debiasing

Lola L. Lopes

University of Wisconsin--Nadison j
As Increasingly sore Is known about human judgment processes, it becomes

reasonable to expect that this knowledge can be used to help people make better

judgments. This Is particularly true in situations where failures of judgment

seem to be orderly manifestations of the processing mechanisms used by the judge

and not merely the random errors that night be attributed to inattention, Insuffi-

cant knowledge, faulty memory and similar nonsystematic factors. Unfortunately,

however, it has been easier to Imagine such Improvement than to produce it

(Fischhoff, 1982).

Probably the first attempts at dablasing human judgments were aimed at

reducing the tendency of naive subjects in Bayesian nference tasks to produce

Judgments that are "conservative" relative to the Bayesian norm (Edwards, 1968).

In discussing these early debiasing efforts, it is useful to rely on a classifica-

tion scheme devised by Fischhoff (1982) in which debiasing procedures are cats-

gorixed according to whether they lay the blame for the bias at "the doorstep of

the judge, the task, or some mismatch between the two" (p. 424).

Allegations that a task is faulty generally center on the possible failure

of the experimenter to instill in subjects sufficient understanding of the task

and sufficient motivation for proper performance. In the cast of Bayesian

Inference, Phillips and Edwards (1966) used specialized payoff schemes and feed-

back in order both to encourage subjects to try harder and to help them better

understand the task. Generally speaking, these methods had some effect in reducing

conservatism, but they were not able to eliminate it.

A second task fault that was investigated involved a potential bias in the '1
response scale. The argument ran that "correct" performance in Bayesian tasks

often requires the production of extreme responses, particularly when the judgments

met be given on a probability scale. If subjects are hesitant to make such

extreme judgments, conservatism can result. Phillips and Edwards (1966) tested 7
this hypothesis by comparing judgments on probability scales with judgments on

"odds" and "log odds" scales which require less extreme responding. They found

that use of response scales such as these reduced conservatism only slightly

relative to the more conventional probability scale.

- ;~ . ~~ - . . -. . -. -. * - -. . . ..
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A more recent attempt at debiasing falls in Fischhoff's (1982) category

of attributing the bias to a mismatch between the task and the judge. Ells,

Seamer, and Edwards (1977) based their procedure on the observation that the

judgments of naive subjects in Bayesian tasks are often more like averages

(or estimates of population proportion) than like inferences, (Beach, Wise, &

Barclay, 1970; Marks & Clarkson, 1972, 1973; Shanteau, 1970, 1972). This being

so, Zle t al. hypothesized that subjects might be better at judging the men

log likelihood ratio for a set of samples than at judging the more standard

cumulative log likelihood ratio. They also noted that the averaging resporse

would reduce problems of "respcnse bias" if there were any operating.

The hypothesis was tested by using two groups of subjects, one of which

rated their average certainty for the target hypotheses and the other of which

rated their cumulative certainty. Responses from both groups were then converted

to log posterior odds form and regression analysis was performed for each subject

comparing inferred log posterior odds to veridical log posterior odds. The

results supported the hypothesis: log odds inferred from average certainty judg-

ments were definitely closer to veridical than odds inferred from cumulative

certainty judgments.

The present research represents an attempt at debiasing that falls in

Fischhoff's remaining category, that of attributing error to faulty judges.

Like the work of Zile at al. (1977), the research begins with the observation

that untutored subjects in Bayesian tasks tend to produce data that are more

like averages than like inferences. But unlike the approach of Zils et al.,

no attempt is made to "engineer" the task to be better suited to human proclivi-

ties. Instead, debiasing involves (a) analyzing the procedures that untutored

subjects use when they produce averages, (b) warning subjects about the specific

procedures that are inappropriate, and (c) providing subjects with appropriate

procedures that can be used in place of the inappropriate procedures.

Averaging and Adjustment in Bayesian Inference

Bayesian inference tasks are usually instantiated in terms of the "bookbags

and poker chips" paradigm in which subjects consider two well-specified hypo-

theses (i.e., bookbags) usually involving populations of binary events (i.e.,

red and blue poker chips). Typically the subject is shown two or more samples,

often sequentially, and is asked after each sample to rate the strength of his

.o
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or her belief about which population generated the samples.

According to Bayes' theorem, the normative response for such situations

Is found by multiplying the prior odds ratio for the two hypotheses by the like-

lihood ratio of the sample data given the two hypotheses. This yields the

posterior odds ratio:

:"p(ROJD) =p(Dlx1) p(H1)
p( 2D) p (ni) X p12

Alternatively, one can write Bayes' theorem to give the probability of a parti-

cular hypothesis:

'%,xp~uZJD) (nl l)d -P(Hl)
p (H1(D) -i P(7Hl) + pDjf)"p(R) (2)

Note that In these equations, the relationship between current data and previous

data is multiplicative.

How do naive humans perform wlen they are asked to provide inferences in

Bayesian tasks? As has already been mentioned, human inferences differ from

Bayesian inferences in two important ways: (a) the ndividual judgments are

typically conservative relative to the Bayesian norm, and (b) the pattern of

Judgments is suggestive more of averaging or estimation than of inference (Beach,

Wise, & Barclay, 1970; Marks & Clarkson, 1972, 1973; Shanteau, 1970, 1972).

Shanteau (1970) hypothesized that people's judgeents in such tasks could be

modeled by an algebraic rule in which the response, R, at any serial position,

n, is given by a weighted average of the scale values, , of the previous and

current ample events:

n

Ews (3)

In this equation the wt are weights that sum to unity and the term w so signifies

the weight and scale value of a neutral initial impression. It should be noted

that averaging Is necessarily conservative relative to inference because averages

always lie within the rsage of the component stimulus values whereas nferences

are often more extreme than any of their component values.

. .
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Shanteau's model is successful in accounting for the quantitative features

of the data, but it does not suggest either why or how averaging occurs.

In previous research (Lopes, 1981; Lopes & Johnson, 1982; Lopes & Oden, 1980)

I have suggested that averaging may occur because subjects ntegrate the

stimulus information serially via an "anchoring and adjustment" process (Tversky

& Kahnaman, 1974). In this process subjects are hypothesized to integrate "new"

information into "old" composite judgments by adjusting the old value as necessary

to make the new composite lie somewhere between the old composite and the value

of the new information. Althcugh this process is qualitatively equivalent to

averaging, it does not presuppose that subjects ever "compute" an average in any

algebraic - or even any conscious -- sense of the term. Instead, averaging is

simply the natural consequence of the adjustment procedure.

One prediction of the adjustment model is that subjects in the Bayesian

task will occasionally make adjustments that are strictly n the wrong direction.

Consider two samples, both of which support the same hypothesis but to different

degrees. If a subject is first shown the weaker sample, we suppose that some

weak preliminary judgment will be made n favor of the supported hypothesis.

When the subject is later shown the stronger sample, adjustment will be made in

the direction of ncreased support for the hypothesis. This is entirely appro-

priate qualitatively. But if the samples are reversed so that the weaker sample

follows the stronger, qualitatively inappropriate adjustment ought to result.

That is, the preliminary judgment ought to produce. a relatively strong result.

When the weaker sample is later ntegrated into the judgment, adjustment should

be in the neutral direction since the value of the weaker sample is more neutral

than the preliminary judgment. Such adjustment is obviously inappropriate since

1o..movement in the neutral direction is de facto movement toward the alternative or

non-supported hypothesis.

.7 Previous research (Lopes, 1981) has clearly supported the prediction that

subjects will adjust in the normatively incorrect direction when a weaker

sample favoring some particular hypothesis follows a stronger sample favoring

the same hypothesis. The present research is aimed at finding out Vhetter these

"directional errors" can be eliminated by training that warns subjects of the

occurrence of the errors and also teaches subjects an alternative procedure that

is directionally correct.

Two experiments are presented. The first experiment focuses on improving

subjects' adjustment procedures qualitatively in specific cases where adjustment

.. . . . . . . .
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errors are kmown to occur. The second experinent extends the training to

include instruction in a selectional procedure that is hypothesized to Improve

subjects' quantitative performance.

Experiment 1

Method

Experimntal task. Subjects in both conditions were asked to put them-

selves in the place of a machinist whose job is to make decisions concerning the

maintenance of millng machines using samples of parts produced by the machines.

The judgment concerns whether or not a critical spring has broken inside the

machine. Subjects were told that normal machines have a rejection rate of about

12 parts per 1000 parts produced (f12/1000), whereas machines with broken springs

have a rejection rate of about 20 parts per 1000 (R20/1000). Thus, In abstract

terns, the subjects were required to decide between alternate Bernoulli processes,

one with p - .012 and the other with p - .02, with p being the probability of a

rejected part.

Stimulus design. The stimulus design was a 9 x 9, first-sample x second-

sample, factorial design in which the levels of both factors comprised the same

amples of parts. These were 12, 13, 14, 15, 16, 17, 18, 19, and 20 rejects per

1000 parts, respectively.

Procedure. Subjects were run individually in sessions that took about

40 minutes for control subjects and 50 minutes for trained subjects. At the

beginning of the session subjects were brought into a sound proof booth and
seated in front of a computer controlled video terminal. Control subjects were

than given general instructions about the nature of the task and stxom how to

read the stiiulus display. A sample of a stinulus display is shown in Figure 1.

At the top of the display is a box showing a sample with 13 rejects out of

1000 parts. Under this is a notation shoving that this is the first of two

samples. At the bottom of the display is a response scale anchored at the left

by the words "machine normal" and at the right by the words "machine faulty".

Figure 1 about here

The procedure for each trial was identical. Subjects read the information

for the first ample and then rated their degree of belief as to whether the
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machine was milling nozmally or not. They made their ratins using a joystick

to move the rating arrow (shown in the middle of the scale in Figure 1) along

the response scale. When they finished their initial rating, subjects pushed

a button on the response box. This caused the nitial rating to be trmmitted

to the computer and also caused the first sample to be replaced by a second

smple of parts from the same machine. Subjects revised their initial rating

to account for the new ample and pushed the response button to transmit their

final response to the computer. Then they initiated the next trial by returning

the response arrow to the middle of the scale and pushing the button again.

The instructions for trained subjects were essentially identical to those

for control subjects through the explanation of the stimlus display and the

rating response, except that trained subjects were told at the outset that they

would be taught a procedure for avoiding a conor judgment error. The actual

training took place during the early practice trials. The first practice trial

was a weak-strong pair (17/19) that was chosen especially to elicit correct

responses from all subjects. For this trial, all subjects initially rated a

sample of 17 rejects to favor the faulty machine moderately and then adjusted

this rating to favor the faulty machine even more strongly after presentation

of the sample of 19 rejects.

The second trial was a stron-veak pair (13/14) chosen to elicit the 4irec-

tional error. On this trial subjects were shown the first sample (13 rejects)

and allowed to make their initial rating and to transmit their response.- Then

they were shotm the second sample (14 rejects) and were allowed to make their

adjustment, but they were stopped before they transmitted the response. Host of

the subjects (20 of 31) made their adjustment in the wrong direction and were

read the instructions reproduced below. The others were read similar Instructions,

but with wording changed to accomnodate the fact that they had, in fact, responded

correctly on this trial.

Before you transmit your response, let me talk with you about

your response. You shouldn't feel bad, but remember I told

you that many people make an error in this task. Well, you

Just made it. Let me explain it to you. Host people, if they

are given a sample of 14 rejected parts as a first sample, say

that the machine is more likely to be functioning normally than

not. But when they are given a sample of 14 rejected parts

after they have just been given a sample of 13 rejected parts,
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they tend to adjust their judgment toward the right, that is, 

toward the machine being broken. Now if you think about it, 

this is an error of adjustment since a sample of 14 rejects 

favors the normal machine and therefore provides additional 

evidence that the machine is normal. Thus, the adjustment 

should be toward the left, that is, toward the machine func

tioning normally. Do you understand this so far? 

After subjects indicated that they understood what the error was, the experi- ·· 

menter taught them a simple procedure for avoiding the error. Basically, this 

was to separate each judgment operation into two steps: (a) the labeling of each 

sample as either favoring the "normal" hypothesis or the "faulty" hypothesis 

and (b) the adj~stment of the current response in the direction given by the 

label. (It is convenient to think of the initial rating produced by the subject 

after presentation of the first sample as involving an adjustment made to an 

earlier and implicit "neutral" response produced by the subject at the onset of 

each new trial.) Thus, when both first and second samples favored the same 

hypothesis, both the initial rating and the final adjustment would be made in 

the same direction relative to the neutral point, and only when the second 

sample favored a hypothesis different from the first would the final adjustment 

be opposite in direction to the irdtial rating. 

After teaching subjects the judgment procedure, the experimenter asked them 

to respond to several trials on their own, while verbalizing what they were 

doing. This allowed the experimenter to check that they were explicitly separa

ting the labeling and the adjustment steps and that they were adjusting at each 

step in the direction given by the labeling operation. Among these training 

trials were two for which these samples were identical. When the first such 

trial (17/17) appeared, the experimenter waited to see whether the subject would 

adjust for the second sample _and then stopped the trial for further 

instruction. Subjects who had failed to adjust (8 out of 31) were told, '~ow 

this kind of trial also cat~ses errors. Let me explain. Your first sample was 

17 rejects and you judged the machine as likely to be broken. Then you got 

new evidence of 17 rejects also favoring the machine being broken, but you d:fdrl.'t 

adjust. Actually you should have adjusted since that is additional evidence 

in favor of the machine being broken. Do you see what I mean?" Subjects who 

had adjusted correctly were read similar instructions, but modified to accord 

with their correct response. 
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It Is Important to note that the training procedure involved only

qualitative features of the judgment process. At no time were subjects given

instruction concerning how they ought to evaluate the sample information

quantitatively. Although such training might be helpful generally, the aim

of the present research was to determine the degree to which judgment can be

Improved by strictly procedural means, that is, by giving subjects better

procedures for operating on information rather than by giving them better or

more accurate information.

Altogether there were 13 trials for practice and training for the trained

subjects. Control subjects received the same 13 trials for practice, but with

no training. Then both groups of subjects received two replications of the

stimulus design, bringing the total number of trials to 175 per subject. Experi-

mental trials within each replication were ordered ravdomly but with the restric-"W
tion that no sample appear either as first-sample or second-sample on two

consecutive trials.

Subjects. The subjects for control and trained groups were, respectively,

30 and 31 student volunteers from the University of Wisconsin-Madison. Approxi-

mately half were males and half females. They served for credit to be applied

to their course grades in ntroductcry psychology.

Results and Discussion

Two questions are of interest in this experiment. The first is whether

training concerning directional adjustment errors can prevent or at least reduce

their prevalence in the inference task. The second is whether, given that such

prevention or reduction of errors is possible, this leads to Improvement in the

accuracy of the final judgments.

Data bearing on the first question are given in Table 1. Five subjects

have been dropped from the control condition and five from the trained condition

since these subjects appeared to base their final Judgments entirely on the

second sample. Note, however, that the basic results of the experiment would
have been the sme whether these subjects were retained or not.

Subjects were unanimous in treating samples of 12 to 15 rejects per 1000

parts as favoring the machine being normal and samples of 17 to 20 rejects

as favoring the machine being broken, but they were highly variable in how
they treated samples of 16 rejects. (Actually, such samples favor slightly the

sachine being broken.) Some subjects 9ended to treat these as neutral, others

.. . ... . .. ...
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treated them as favoring one or the other hypothesis, and still others treated

then Inconsistently across trials. For reasons of this variability, pairs

involving 16 rejects are not considered explicitly In the formal analysis.

However, an interesting problem involving ttese samples that occurred for some

subjects is described n the General Discussion.

Table 1 about here

Taken together, there were 20 pairs n which adjustment errors might have

* been expected. These comprised the eight pairs along the diagonal of the

stimulus design n which the two samples are Identical (i.e., 12/12, 13/13,

14/14, 15/15, 17/17, 18/18, 19/19, 20/20) and the twelve non-diagonal pairs

in which a (stronger) sample favoring a particular hypothesis is followed by

a weaker sample favoring the sam hypothesis (i.e., 12/13, 12/14, 12/15, 13/14,

13/15, 14/15, 20/19, 20/18, 20/17, 19/18, 19/17, 18/17). These pairs are

ndicated n the table as "diagonal" pairs and "strong-weak" pairs, respectively.

The table also gives results for the set of "weak-strong" pairs. These are

exactly the same set as the strong-weak pairs except that the stronger sample

n each pair is preceded by the weaker. Since for these pairs the ntuitive

direction of adjustment is normatively correct, they provide an estimate of the

rate of adjustment errors that occur for reasons other than the incompatibility

of the normative response with the intuitive direction of adjustment (i.e.,

misreading the stimlus).

Looking first at strong-weak pairs and weak-strong pairs, it is clear that

*.' the training procedure has been effective in reducing the number of directional

. adjustment errors, where "error" refers to an explicit adjustment in the

nonnormative direction. (Including as errors occasions on which no adjustment

was made would have produced essentially the same results.) For the control

group there is an average of 13.4 errors per subject (out of 24 mazimum) for

strong-weak pairs compared to an average of only .40 errors per subject for

weak-strong pairs; F(1,24) - 60.43, < .05). For the trained subjects, however,

the average is 3.11 errors for strong-weak pairs compared to .42 errors for

weak-strong pairs; F(1,25) - 8.33, p< .05. Comparing across groups, the trained

. ~ subjects have significantly fewer errors then control subjects for strong-weak

pairs [F(1,49) - 113.46, p < .051 but not for weak-strong pairs F < 11.

The final row of the table gives the results for diagonal pairs. Adjustment

errors have been scored for these pairs only if there was room for the adjustment

to occur (i.e., the response was not already at the end of the scale) and if there

.4
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was either no adjustment at all or adjustment in the wrong direction. (Errors

of the latter type were very rare.) Mean errort (out of a maximum of 16)

were 3.24 for the control group and 1.08 for the trained group. Both these

error rates are significantly different from zero (F(1,24) - 26.18 and F(1,25)

-=8.99, respectively, p< .05], and the rate for the control group is signi-

ficantly higher than that for the trained group [F(1,49) - 10.29, p< .051.

In general, it appears that the training procedure was able to reduce

(although not completely to eliminate) directional adjustment errors, parti-

cularly for strong-weak pairs. The question remains, however, as to whether

this reduction was accompanied by improved accuracy of judgment (i.e., reduced

conservatim). Figure 2 gives the final Judcment da ta for the control group

pooled over both subjects and replications. For purposes of comparison,

Figure 3 gives theoretical values for an optimal Bayesian judge. In Figure

2, the data for pairs where errors are likely (i.e., strong-weak pairs

.. and diagonal pairs) are shown by filled symbols and the data for remaining

pairs are shown by open symbols. The row parameter in both cases is number

of rejects in the second sample."

Figures 2 and 3 about here

It is clear graphically that there is a large difference between the data

pattern produced by the control subjects and the theoretical pattern: The

theoretical data have a "barrel" shape whereas the control data look sore like

a set of parallel lines. This appearance is borne out by analysis of variance:

Although the data for control subjects have a significant interaction [F(64,1536)

-2.66, < .05), it accounts for only .7% of the total systematic sum of squares.

By way of contrast, analysis of variance on the theoretical values indicates

that the interaction should account for 4.66% of the systematic sun of squares.

The data for the trained subjects are in Figure 4. Overall, the figure

presents the same appearance as that for the control group, although the inter-

action term ((64,1600) - 4.98, <' .05) Is somewhat larger, accounting for

1.22 of the systematic sum of squares.

Figure 4 about here

Although Figure 4 gives all the data, the points that are critical for

the training procedure are just those that are filled. Comparison of these



critical pairs for control and trained subjects shows that subjects who had

received training were, indeed, more accurate in their judgments for these

points. Figured on group means, the root-mea-squared-deviations between

obtained and theoretical were, for the control group, .0723 for strong-weak

pairs and .0227 for diagonal pairs, relative to the 0-1 response scale.

For the trained subjects, however, these values were .0187 and .0047,

respectively.

The data for the critical pairs are about what might be expected given

the nature of the training, but an unexpected finding is that improved perfor-

mance on strong-weak pairs generalized to the corresponding weak-strong pairs:

Although the training procedure did not in any way attempt to modify subjects'

procedures for judging weak-strong pairs, trained subjects did about as well

on these (RMSD - .0220) as they did on the strong-weak pairs. In the same

way, the control subjects did about as poorly on weak-strong pairs, 3USD-

.0626, as they did on the strong-weak pairs.

This generalization of improved accuracy from st& -eek to week-strong

pairs is of interest since it suggests that the tramaft lastruction. may have

been effective not only in helping subjects avoid the specific adjustment error,

but also in helping them understand the task better. Although the present data

.4 do not speak to the issue directly, previous data showing that the Judgments of

naive subjects are more like estimates of population proportion then they are

like Inferences (Beach, Wise, & Barclay, 1970; Marks & Clarkson, 1972, 1973;

Shenteau, 1970, 1972) suggests that subjects may have difficulty understanding

the difference between inference and estimation. By focusing attention on the

directional errors n inference that occur for strong-weak pairs, one may also,

by serendipity, focus attention on the special characteristics that distinguish

inference from estimation and hence, improve subjects' understanding of the task.

But If trained subjects do understand the nference process better than

control subjects, why do their data show the ame tendency toward parallelism?

Put another way, why are their inferences so conservative for those hetero-

geneous pairs (shown in the upper left and lover right quadrants of the figures)

in which the two samples favor different hypotheses? The answer to this amy

lie in the weights that subjects give to the various samples.

Consider a situation that is like the current one except that subjects

are actually instructed to estimate the proportion of rejected parts for a

particular machine. If the two samples are of equal sise and equal reliability,Lo
LA!.il{i *
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the subject ought to give them equal weight and simply average the values.

Furthermore, no matter what value a particular sample has (i.e., whether the
first sample is 12, 14, 16 or any other number of rejects), the value itself

4 should not affect the weight of the sample in the overall judgmnt. A subject
-1' who followed such a "constant weighting" strategy would produce a parallel

pattern of data such as is found in Figures 2 and 4.

The Dayesian task, however, requires that subjects adopt a "differential

weighting" strategy: Samples that are extreme (i.e., 12 or 20) are more

diagnostic than samples that are nearer neutral (i.e., 15 or 17), and should

be weighted more heavily in the inference process. But this is what,

apparently, subjects do not naturally do in the ayesian task (i.e., Beach,

Wise, & Barclay, 1970; Shanteau, 1970) or in a great many other tasks as

well (c.f. Anderson, 1974). Thus, It may be that subjects in the trained

condition do understand the Bayesian task better than their control condition

analogs, at least in the sense that they are really integrating evidence and
not merely integrating sample sizes, but they say not understand that the more

extreme estimates are more diagnostic and hence should be accorded greater

weight. For homogeneous pairs in which both samples favor the same hypothesis,

such a misunderstanding would not be likely to Impair accuracy much since

subjects' responses are forced to converge (just as they ought to) by the and

of the response scale. For heterogeneous pairs, however, the misunderstanding

is more serious since there is nothing to prevent subjects from making overly

large adjustments given only weakly diagnostic information, thus cauving the

poor correspondence between theoretical and obtained for these particular pairs.

Experiment 2 investigates whether this hypothesized problem with intuitive

weighting of information can be alleviated by a modification of the training
procedure used in Experiment 1.

Experiment 2

Method

Task and dasl=. The task for Experiment 2 was exactly like the task for

Experimaent 1 except that the two samples within each pair were presented
simultaneously. The stimulus design was the same as had been used in Experiment 1.

Procedure. The procedure for the control subjects was essentially the same

as for Experiment 1 except for the differences occasioned by the siultaneous

.!
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stimulus display. However, the instructions for the trained subjects were

more detailed and were applied to every kind of stimulus pair. When trained

subjects were first brought into the experiment they were told that they would

be taught a simple procedure that would allow the to make good judgments in

a particular kind of Inference task. Then they were told abcut the task situa-

tion (i.e., the machine aintenance problem) and were instructed how to read

the stimulus display and use the response device. The actual training begm

only after it was clear that the subjects understood the stimulus situation.

Subjects were taught a four stop procedure to be applied to every stimulus

pair. The steps were introduced to subjects and explained as the subjects

worked through a series of practice trials. During this training period subjects

were asked to work through the steps out loud so that the experimenter could

check on their understanding and use of the procedure. The steps were as

follows:

(a) Judge for each sample separately whether it supports the "normal"

hypothesis or the "faulty" hypothesis or whether it is neutral.

(b) Decide which of the two samples supports its own hypothesis more

strongly.

(c) Make an initial rating as to whether the machine is faulty or not

based only on the stronger of the two pieces of evidence. If both

piaces are equally strong, either can be used as the basis for the

Initial rating.
Ad) djust the Initial rating In order to take into account the second,

(weaker) piece of evidence.

(i) If the second piece of evidence favors the ame hypothesis as

*.1 the first, then "consider the portion of tte response scale

between [the] original rating and the [appropriate] end of the

scale and move the arrow into this region according to how

strong the remaining evidence is."

(I(Ii) If the second piece of evidence favors the opposite hypothesis,

then "consider the portion of the rating scale between [the]

original rating and the neutral position and adjust back into

this region according to how strongly the sample [supports the

other hypothesis] ."

Note that although the procedure sounds comlicated when summarized, it was

much simpler to follow in the context of actual stimulus pairs. No subject

appeared to have any great difficulty in following the procedure during training
e1
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or in executing the task afterward.

Altogether there were 20 trials for practice and training for the trained

subjects. Control subjects received the same 20 practice trials, but with no
'  training. Then both groups of subjects received two replications of the basic

stimulus design, bringing the number of trials to 182 per subject. Experi-

mental trials within replication were ordered randomly but with the restriction

that no given ample appear on two consecutive trials. The full experiment

required about 40 minutes for control subjects and about 55 minutes for trained

subjects.

Subjects. The subjects were 56 student volunteers from the University of

Wisconsin-Madison, split evenly between the control and the trained conditions.

About half were males and half females. Most subjects served for pay, although

a few served for credit to be applied to their ccurse grade in introductory

psychology.

Results and Discussion

The data for the control subjects are given In Figure 5 pooled over both

subjects and replications. Samples designated "first" appeared above the other

sample in the simultaneous display.

Note that the pattern of judgnents is essentially Identical to that of the

control subjects in Experiment 1. This visual similarity is confirmed by an

analysis of variance showing that the interaction, although significant, F(64,1728)

- 1.81, < < .05, accounts for only .42% of the systematic sum of squares.

Calculation of the root-mean-squared-deviations between theoretical and obtained

reveals an overall RMSD of .1043 for the entire data array, which breaks down to

RMSD's of .0968 for homogeneous cells, .1156 for heterogeneous cells, and .0322

for diagonal cells.

Figure 5 about here

The data for the trained subjects are in Figure 7. Clearly, the training

procedure has been effective in making the subjects' responses more optimal.

In terms of analysis of variance, the interaction [F(64,1728) - 33.89, P < .051

now accounts for 4.551 of the systematic sum of squacres compared to the optimal

value of 4.66Z. The overall RMSD between theoretical and obtained is .0480,

which breaks down to RMSD's of .0321 for homogeneous cells, .0567 for hetero-

geseous cells, and .0077 for diagonal cells. Although deviations for heterogeneous

................... ... . ...... ...... o.......... . . ..... ... ..- - . .. ..
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cells are still somewhat larger than those foi homogeneous cells, they are much

Improved compared to those for the control group. It is also interesting to

note that the largest deviations between theoretical sad obtained now tend to

involve overly radical responses. This is particularly evident for homogeneous

pairs in which one sample was 12 rejects and the other was near neutral (15 or

16 rejects). In part these errors reflect the fact that subjects tended to

treat the judgment task syimetrically, when samples of 12 rejects actually gave

considerably less support to the hypothesis 812/1000 than samples of 20 rejects

gave tc the hypothesis 120/1000.

Figure 6 about here

General Discussion

*' Before proceeding to a discussion of the implicetions of the present

research, it Is isportant to point out exactly what the training procedures

did and did not "teach" the subjects. Obviously there would be little interest

in showing that subjects can learn to use Bayes' theorem if they are given

explicit instruction on how to do so. Deb18sing becomes of interest only if

'Iit Is possible to modify subjects' predilections by procedures that are closer

to natural modes of thought than is the rote application of an appropriate

normative rule. In other words, the goal is to educate the ntuition, not

merely to Improve the performence.

In Experiment 1, the training procedure taught the subjects only one

thing that previously they did not Imow, namely, that adjustments of the initial

rating made after presentation of the second @ample should always be in the

directin of the hypothesis favored by the second sample. In Experiment 2, the

explicit training included the same information about adjustment direction

but also taught subjects to process the two samples in order of their apparent

relative sttength. At no time in either training procedure did the experimenter

teach the subjects mything about which samples favored which hypottesis or

how strongly they did so, nor did she suggest how diagnostic or 'Weighty" the

samples should be considered to be. These matters of sample evaluation were

always left entirely to the subjects.

In light of the limited training to which subjects were expored, the

mount of debiasing that occurred is impressive. In Experiment 1, explicit

-~ -** ~ **- -* *-* . . . . . . . . . II. . . . . . . . . . . ..m .m n n .. m
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training was directed only at the 12 strong-weak pairs and the 8 diagonal pairs.

It would have been entirely within reason for subjects' responses to the other

61 pairs to be unaffected by the training since, so far as was indicated, there

was nothing wrong with their intuitions concerning such pairs. As it turned out,

however, improvement generalized from the strong-weak pairs to analogous weak-
strong pairs. Obviously, there is no way to know for sure wby this Improvement

occurred, but a possibility that has appeal is that tte training focused

subjects' attention on the nferential nature of the task and prevented the

apparently coaon tendency to fall into judging tte sample proportion rather

tban the relative likelihood of the two hypotheses. Thus, trained subjects
ay have benefitted not only from prior instruction concerning how to prevent

a particular error, but also by being forced, so to speak, to better understand

what it was they were judging.

There was, however, for some trained subjects an interesting failure of
generaliation for certain pairs in which a diagnostic ample (i.e., a smple

favorln one or the other hypothesis) was followed by a ample that the subject

judged to be neutral or noudiagnostic (i.e., a sample of 16 rejects). As was

noted earlier, there was considerable variability aneg subjects in how they

evaluated samples of 16 rejects. Nevertheless, 9 control subjects and 16 trained

subjects seemed reliably to produce initial ratings of about .50 when a sample

of 16 rejects appeared as the first smple. Thus, for these subjects we can

assume that such smples were judged to be neutral. When such *mples folloved

diagnostic smples, however, all of the control subjects and all but 5 of the

"-p trained subjects adjusted their initial ratings toward neutral, which is
*.-, nornatively inappropriate given that the ample is judged to support neither

hypothesis. For the control subjects, such errors are not surprising (c.f.

Shanteau, 1975; Troutman G Sbanteau, 1977). but the question is why so any

trained subjects, if they really understood the task better than control

subjects, also made the inappropriate adjustment. The answer may lie in how

these subjects interpreted the label "neutral." Ideally, a subject who

applies the label "neutral" to the second of two samples will interpret this
as providing sero support for either hypotesis and hence will make no adjustment

4 of the Initial response. But if subjects do not recognise that "neutral" mame
"sero support," they may interpret the ample as evidence for another hypothesis,

nanely, that the machine Is neither clearly mosmal nor clearly broken, and

adjust toward the scale position (i.e., the -4dpoint) that best seems to signify
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this third hypothesis.

1 h lkperimest 2 the extant of deblssiag was even more remarkable, particu-

larly whim one recalls the many previous wesuccesful efforts that have been

" directed at reducing conservatim in the Dayesian task. In evaluating this

result, it Is Importt to umderstand that there was nothint in the instructions

tha ould have prevented subjects from continuing to weight information

equally regardless of diagnostlclty. That Is, the subjects were only instructed

to begin their judpamt using the "stronger" sample; they were not instructed

to give it more weight in the final judgment. Nevertheless, the net effect of

the mmn1pulatim was for judgmnts to closely approximate optimal values.

hether this occurred because subjects intended to give the more inportant

stiuslus more weight is, of course, not clear. One night argue that the

Amproved weighting pattern occurred due to uniatestional primacy effects that

were outside of the subjects' comprehension of the task. But It Is worth

noting that n natural judgment situations, people often "put first things first,"

considering those Items that are deemed to be Importast before they consider

other, less Importat Items. Thus, ace strategy for differential weighting may

be mxactly to attend to Items in order of importance and to naks smaller and

emaller adjustments for Items that are of lesser uad lesser imporetace.

hat Do Judges Do?

Por more tham 20 years, evidence has been accumulating that huan judgments

often see to follow algebraic rules (of. Aaderson, 1974). The "averaging rule"

for Inference judgmints is merely ane case In point. But algebraic models of

judgmest have had limited appeal for momr judgment researchers because they have

* only "as if" statue: The data look as If they have been produced by application

of an algebraic rule, but there Is so theoretical necessity that the psychological

processes of the judge In my way resemble "paper and pencil" algebraic mnipula-

tion.

The "dabbising" research reported hare was based c a procedural theory of

how people generate data that have algebraic patterns. The approach was based

oan the assumption that if a person's judgmts In inference tasks look more like

averages than like inferences, then at some point during the judgmant process

the person must be performing one or more operations that are nearer to those

required for averaging than they are to those required for Inferencing.

Dbissing, then, mast involve discovering those inappropriate judgeant operations
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and replacing then by operations that are better suited to nference.

Figure 7 outlines the major steps that are hypothesized to occur during

judgment. In the first step, scaning, the judge merely assesses what informs-

tau has bees presented for judgment. Obviously, the details of the santning

step will depend on the task Itself. In tasks such as that used n Experiment 1

where stimulus information is presented sequentially, scom in$ will be rudi-

mentary since there is only one stimulus to scan. In simultaneous tasks, however,

sconing will be more clearly distinguishable from other judgment operations.

In some tasks (such as that used in Experiment 2) where the number of stimulus

Items Is smll and where there Is no a priori reason to suppose that any particular

item will be more important than 3ny other Item, scanning will include all

available items, with order of scannnL determined by stimulus formatting factors.

In other cases, however, such as judging applications for graduate admission,

some items may be consistently scanned before other items (i.e., GPA, GRE scores,

etc.), and some items may be not scanned at all, at least not on the initial

pass over an application (i.e., applicant's hobbies, past employment, etc.).

It is assumed that the scanning operation is primarily aimed at orienting

the judge to the available nformation. Although the judge may develop a rough

Impression of the stimulus from scanning It, this Impression will not in general

be the final response. There may, of course, be exceptions to this rule.

For example, if in scanning a graduate application, the judge notices that the

candidate is clearly below etandard on some critical factor, that application

may be Imediately rejected. Nevertheless, many experimental tasks implicitly

or explicitly rule out such snap judgments by cautioning the judge against

aking overly hasty "end-responses.".

Once the judge has scanned the available information, he or she is hypo-

thesized to select an item to use as an "anchor point" (cf. Einhorn & Hogarth,

1982; Lopes & Johnson, 1982; Lopes & Ode, 1981; Tversky & Kaneman, 1974).

If only one item has been presented, of course, that item must be the anchor.

But If more than one item Is available the "anchor stimulus" will generally be

chosen because It seems relatively more important than the others. Such

importance may reflect the a priori importance cf the category to which the

item belongs as, for example, GPA for graduate admissions. But it may also

reflect dignosticity within category as, for example, when items are selected

by virtue of their being very extreme. Only if the various items sees equally

important will the subject resort to ad hoc choice schemes such as, for example,
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taking the items in order as they appear in the stinulus array.

Once an anchor has been chosen, it must be evalusted relative to the

scale of judsint. This "valuation" operation may n some cases yield a quantity

that serves directly as the nitial Judgment. For example, previous research

on the nference task used In the present experiments suggests that subjects may

simply anchor their judgment at a scale position that is proportional to the

number of rejects in the first ample (Lopes, 1981). In other cases, however,

the initial judgment may be somewhat less extreme than the scale value associated

with the anchor stimulus. In these situations subjects act as though their
.initial judgment is a compromise between the value of the stimulus information

and some internal, neutral "initial Impression" (Anderson, 1967).

Once anchoring has been accomplished the subject mst decide whether there

are still Important items left to be judged. If so, the process essentially

reiterates, with the subject choosing which of the remaining items to consider

*i next. As can be sean in the figure, the considerations at this point are

exactly what they were at the time of choosing the anchor: If one of the remaining

Items is clearly more important than the others, the subject chooses it, other-

wise an item is chosen arbitrarily, and the scale value of the chosen item is then

determined.

The next step in the process is "adjustment" of the initial value in light

of the new information. It is this step, that is seen as being most crucial in

determining the algebraic form of the overall judgment. In the case of "averaging"

rules, the adjustment operation is assumed to Involve two stages: (1) location

of the new information on the scale of Judgment relative to the initial judgment,

and (2) adjustment of the initial judgment toward the new information. This

produces a new judgment that lies between the first two values and is, in that

sense, an average of the two. Other algebraic rules can also result from the adjust-

ment stage, but the particulars of their respective adjustment processes differ

in Important ways. For example, multiplying can be seen as a form of serial

fractionation (Lopes, 1976; Lopes & Ekberg, 1980) in which adjustments to the

Initial value are always downward (toward a zero-point on the response scale)

and directly in proportion to the subjective value of the stimulus being adjusted

for. In the same way, ratio responses, such as those produced by trained subjects

in 2periment 2, can be seen as involving adjustments that reflect the degree to

which new information supports or disconfirms the qualitative impact of previous

information.
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After each adjustment step, the Judge is assumed to consider whether there

are still Important items left unaccounted for. If there are, the process is

repeated with each new item of Information leading to adjustment of the previous

judgment, and with the adjustments ordinarily becoming smaller as the perceived

Importance of the new nformation becomes smaller n relation to previously

considered nformation. At some point, however, either when the stimulus nforma-

tion runs out or when the subject judges that nothing Important remains to be

considered, the final response is made on whatever scale has been provided.

Changing What Judges Do

In order to debias human judgments, it is necessary to change the judgment

process. But bow? As Fischhoff (1982) pointed out, that depends on one's

theory of why the judgments are biased. The earliest attempts at debiasing

Bayesian inference were based generally on global notions of why the bias

* .occurred: i.e., subjects were poorly motivated, or misunderstood the instructions,

--- or refused to use the response scale properly. These causal models had in common

that they Implicitly "amed ttat the bias could be "fixed" without the necessity

of knowing how the subject actually generated the biased judgment.

The present approach differs from these early methods in that it rests on

an analysis of what the subject does when he or she erroneously produces an

average rather than an inference. In this view, the judgment process is seen as

comprising a set of procedures for scanning, selecting, analyzing and, finally,

integrating stimulus information. The procedures are quantitative, but not

numerical; computational but not arithmetical. The procedures function in such

a way that judgments can be described fairly as the result of an averaging

process, but the "algebra" is implicit in the subject's actions rather than

explicit in conscious awareness.

what-In debiasing the present task, the first step was to understand exactly

what subjects did in producing their biased judgments. Then it remained only

lei to Identify the faulty procedures and to replace these by similar--but normatively

more appropriate-procedures.. What is surprising is that for once the debiasing

was even easier to do than to Imagine, due in part to the fact that the training

not only replaced "bad" procedures but, apparently, helped subjects to better

1understand the task.

Only one other debiasing method, that of Eils, Seaver, and Edwards (1977),

has been as successful as the present method in Improving the performance of

.,e- . -- - - - -- - - - - - ~ ! .-
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naive subjects In the Bkyesim task. On the face of it, there are profound

diferences between these two successful approaches, not the least of which is

that Silo et al. engineer the task to fit the subjects whereas the present

approach engineers the subjects (or at least their judgment procedures) to fit

the task. In a deeper sense, however, the two approaches have much in common

because they are both based on an understanding of procedures that sut-jects

use when they generate biased responses.

Sil et al. base their approach on the empirical observation that subjects,

by whatever urns, produce data that are more like averages than like inferences.

They cleverly turn this "error" to their advantage by recasting the task so that

subjects are asked to do what they do naturally and well, namely, averaging.

It then requires only a simple mechanical transformation to convert the subjects'

"average likelihood ratios" into "cumulative likelihood ratios."

The present approach is also based ov an understanding of the averaging

process, but the focus Is shifted from the algebraic form of the data to the

microstructure of the process that generates the data. The tacit assumption Is

that although subjects have access to components of the judgment process (and

hence that they can control the sequence n which components are executed and the

content on which they operate), they do not have assess to the algebraic Implica-

tions of what their procedures do. Thus, there is little point in enjoining

subjects to be less conservative, or to report their "true" probabilities, or to
multiply rather than average.

Serious engineering in any domain rests on knowledge of the medium to be

engineered. In the case of judgmental engineering, one must understand the

judge as well as the judgment. People do some things well, other things badly;

they have access to some processes and not to others. Building better judges

requires that we know what people do and how they do it. After that, debising

is easy..4

p "- " o - '' , ' " " " " " .. ' '""' %1 "" ' " ' "
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TABLE 1

NUMBER OF ADJUSTMNT ERRORS

EXPERINUT 1

PAWR CON1TROL TRAINED MAXIMUM POSSIBLE

Wek-trng0.40 0.42 24

Strong-weak 13.40 3.11 24

Diagonal 3.24 1.08 16

Note. Errors were scored for weak-strong cells and strong-weak cells only if

there was actual adjustment and it was In the wrong direction. Errors were

scored for diagonal cells only If there was room for adjustment and if there

was adjustment In the wrong direction or no adjustment.
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SAMPLE

FIRST

MACHINE MACHINE
NORMAL FAULTY
12/1000 20/1000

Figure 1
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Dr. A. D. Baddeley Dr. H. McI. Parsons
Director, Applied Psychology Unit Human Resources Research Office
Medical Research Council 300 N. Washington Street

, 15 Chaucer Road Alexandria, VA 22314
Cambridge, CB2 2EF
England Dr. Jesse Orlansky

Institute for Defense Analyses
Other Government Agencies 1801 N. Beauregard Street

Alexandria, VA 22311
Defense Technical Information Center
Cameron Station, Bldg. 5 Professor Howard Raiffa
Alexandria, VA 22314 (12 cys) Graduate School of Business

Administration
Dr. Craig Fields Harvard University
Director, System Sciences Office Boston, MA 02163
Defense Advanced Research Projects
Agency Dr. T. B. Sheridan
1400 Wilson Blvd. Department of Mchnical Eigineering
Arlington, VA 22209 Massachusetts Institute of Technology

Cambridge, MA 02139
Dr. Lloyd Hitchcock
Federal Aviation Administration Dr. Arthur I. Siegel
ACT 200 Applied Psychological Services, Inc.
Atlantic City Airport, NJ 08405 404 East Lancaster Street

Wayne, PA 19087
Dr. M. Montenerlo
Human Factors & Simulation Dr. Paul Slovic
Technology, RTE-6 Decision Research
NASA HQS 1201 Oak Street
Washington, D.C. 20546 Eugene, OR 97401

* Dr. J. Miller Dr. Harry Snyder
Florida Institute of Oceanography Department of Industrial Engineering
University of South Florida Virginia Polytechnic Institute and
St. Petersburg, FL 33701 State University

Blacksburg, VA 24061
Other Organizations

Dr. Robert T. Hennessy
Dr. Robert R. Mackie NAS - National Research Council (COHF)
Human Factors Research Division 2101 Constitution Ave., N.W.
Canyon Research Group Washington, D.C. 20418
5775 Davson Avenue
Goleta, CA 93017 Dr. Amos Freedy

Perceptronics, Inc.
Dr. Amos Tversky 6271 Variel Avenue

Department of Psychology Woodland Hills, CA 91364
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Dr. Robert Williges Dr. Christopher Wickens
Dept. of Industrial Engineering & OR University of Illinois
Virginia Polytechnic Institute Department of Psychology
and State University Urbana, IL 61801
130 Whitteamore Hall
Blacksburg, VA 24061 Mr. Edward M. Connelly

Performance Measurement
Dr. NMredith P. Crawford Associates, Inc.
American Psychological Association 410 Pine Street, S.E.
Office of Educational Affairs Suite 300
1200 17th Street, N.W. Vienna, VA 22180
Washington, D.C. 20036
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Dr. Deborah Boehm-Davis Room 35-406
General Electric Company Massachusetts Institute of Technology
Information Systems Programs Cambridge, MA 02139
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Arlington, VA 22202 Dr. Edward R. Jones
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Dr. Ward Edwards McDonnell-Douglas Astronautics
Director, Social Science Research Company
Institute St. Louis Division
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Los Angeles, CA 90007 St. Louis, NO 63166

Dr. Robert Fox Dr. Babur M. Pulat
Department of Psychology Department of Industrial Engineering
Vanderbilt University North Carolina A&T State University
Nashville, TN 37240 Greensboro, NC 27411

Dr. Charles Gettys Dr. A. K. Bejczy
Department of Psychology Jet Propulsion Laboratory
University of Oklahoma California Institute of Technology
455 West Lindsey Pasadena, CA 91125
Norman, OK 73069

Dr. Stanley N. Roscoe
Dr. Kenneth Hammond New Mexico State University
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Boulder, CO 80309 Mr. Joseph G. Wohl
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Dr. William R. Uttal
Institute for Social Research
University of Michigan
Am Arbor, MI 48109
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Bolt Beranek & Neuman, Inc.
50 Moulton Street
Cambridge, MA 02238

Dr. Hillel Einhorn
University of Chicago
Graduate School of Buriness
1101 E. 58th Street
Chicago, IL 60637

Dr. David J. Getty
Bolt Beranek& Mnan, Inc.
50 Moulton Street
Cambridge, MA 02238
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Behavioral Technology Laboratory
3716 S. Hope Street
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., .~ Duke University
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Decision Research
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University of Virginia
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1. Gregg C. Oden &Dominic W. Massaro -Integration of place and voicing information
In identifying synthetic stop-consonant syllables. July 1977.

2. Lola L. Lopes G Gregg C. Oden - Judging similarity among kinship terms. October
1977.

3. Gregg C. Oden - On the use of semantic constraints in guiding syntactic analysis.
January 1978.

4. Howard J. Kallman & Dominic W. Massaro - Similarity effects in backward recognition
maaking. May 1978.

5. Steven J. Lupker & Dominic W. Massaro - Selective perception without confounding
contributions of decision and memory. May 1978.

6. Gregg C. Oden & James L. Spire - Influence of context on the activation and selec-
tion of ambiguous word senses. August 1978.

, 7. Lola L. Lopes & Per-Nakan S. Ekberg - Serial fractionation n risky choice: Test
of an analog process for multiplicative judgment. August 1978.

8. arcia A. Derr & Dominic W. Massaro - The contribution of vowel duration, F
contour, and frication duration as cues to the /juz/ - /jux/ distinction.
September 1978.

9. Dominic W. Massaro & Gregg C. Oden - Evaluation and integration of acoustic features
in speech perception. September 1978.

10. Gregg C. Oden & Lola Lopes - Kin search: Answering questions about relations among
relatives. September 1979.

11. Gregg C. Odn& Lola L. Lopes - On the internal structure of fuzzy subjective
categories. September 1980.

12. Lola L. Lopes - Decision Making in the Short Run. October 1980.

13. Lola L. Lopes - Averaging Rules and Adjustment Processes: The Role of Averaging
in Inference. December 1981.

.4

14. Gregg C. Oden - Integration of Linguistic Information in Language Comprehension.
April 1982.

15. Lola L. Lopes - Procedural Debiasing. October 1982.

* University of Wisconsin-Madison
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